

STUDIES AND REPORTS

THE SCIENTIFIC PROOF

Photocatalytic UV-LED Air Purifier

Removes viruses, bacteria and harmful gases from the air.

Photocatalytic Titanium Pro UV LED Filter System

www.airodoctor.com

The AiroDoctor air purifier with photocatalytic functionality completely breaks down harmful substances, gases, viruses and pathogenic bacteria instead of the simple collection of contaminants, used in conventional air cleaners. Furthermore, only harmful particles are decomposed by touching the photocatalytic titanium dioxide. It does not only work extremely efficiently, but it is safe as it produces no ozone or other chemical substances that could be harmful for the human body. Due to the fine pored structure of the photocatalytic system, there is an excellent filtration level of particles up to PM2.5 classifications with a diameter of less than 0.1µm

The AiroDoctor with UV LED photocatalytic system offers a durable and reliable air purification with high efficiency and a real elimination of harmful substances compared to conventional air purifiers that only run on a filter basis.

Test Reports:

- Korea Institute of Civil Engineering and Building Technology South Korea 99,9% Elimination of Human Corona Virus (HCoV-19 / SARS-CoV-2) 99,9% Elimination of Virus & Bacteria *E.coli*, Salmonella, Rota-Virus, Noro Virus (Murine), Bacteriophage MS-2, Influenza A
- The Kitasato Institute of Medical Research Japan 99,9% Elimination of Virus & Bacteria *E.coli*, MRSA, Influenza A

Certifications:

- 1. KC Electrical Certification
- 2. KC Safety Certification
- 3. Korea Electronics & Technology Institute

Ozone / Formaldehyde / Ammonia / Ethylene oxide / Acetic acid / Toluene

4. CE Declaration of Conformity

Test Report: Korea Institute of Civil Engineering and Building Technology (KICT)

www.kict.re.kr

Ministry of Science and ICT

The Korea Institute of Civil Engineering and Building Technology (KICT) is a Science & Technology government research institute. Since 1983, the institute has continuously operated to solve national and social issues, to create favorable, safe and high-quality environments in Korea. The KICT is a member of the research institute of the National Research Council of Science & Technology which operates together with the Ministry of Science and ICT.

Anti-v	viral I	Perfo	rmance Ass	essment			\backslash .					Airc	Dod		UTE of CIVIL ENGINEERIN
11010100	광촉매 소재		균·바이러스		UV 조사 및 측정 시간								바이러스		
실험방법	종류 농도		종류	농도	0.25 ^m	0.5 ^m	0.75 ^m	1.0 ^h	1.25 ^h	1.5 ^h	2.0 ^h	3.0 ^h	4.0 ^h	분석방법	제거율
_	P-25		Bacteriophage QB	1×10 ⁷ pfu/ml		Ø		0			0	0	0	Plaque Assay	99.99%
		1	Bacteriophage MS-2			0		0		Ø	0			Pour Plate Method	99.8%
	P-25		E. coli			0		0		Ø	0			Spreading Plate Method	99% †
Coating	NP400	-	Salmonella	2×10 ⁴ pfu/ml		0		0		Ø	0			Spreading Plate Method	99% †
			Norovirus(Murine)			0		0		Ø	0			Plaque Assay	99% †
			Rotavirus			0		0		Ø	0			Plaque Assay	99% †
	P-25		Influenza	6.7×10 ⁶ TCID ₅₀ /ml									Ø	TCID ₅₀	99.99%
			Bacteriophage Qß		0	0		Ø						Plaque Assay	99.99%
	P-25	0.0005%	E. coli	5×10 ⁷ pfu/ml	0	0		Ø						Spreading Plate Method	99.99%
			Bacteriophage MS-2	2×10 ⁴ pfu/ml	0	0		Ø	0					Pour Plate Method	99.9%
			E. coli		0	0		Ø	0					Spreading Plate Method	99% †
Suspension	P-25 NP400	0.1%	Salmonella		0	0		Ø	0					Spreading Plate Method	99% †
	111400		Norovirus(Murine)	2×10 ⁴ cfu/ml	0	0		Ø	0					Plaque Assay	99% †
			Rotavirus		0	0		Ø	0					Plaque Assay	99% †
	P-25	0.1%	HCoV	2×10 ⁴ pfu/ml	0	0	0	0						RT-qPCR	99% †
	P-25	0.05%	HCoV	2×10 ⁴ pfu/ml								Ø		RT-qPCR, TCID ₅₀	99.96%

Fig. 1: Antiviral and antimicrobial performance evaluation of photocatalytic materials

Test condition ISO 16000-36:2018, Indoor air — Standard method for assessing the reduction rate of culturable airborne bacteria by air purifiers using a test chamber

Test Report: Korea Institute of Civil Engineering and Building Technology (KICT)

www.kict.re.kr

99,9% Elimination of Human Corona Virus (HCoV / later renamed to SARS-CoV-2)

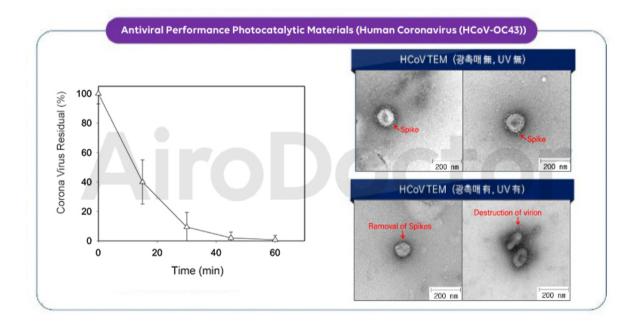
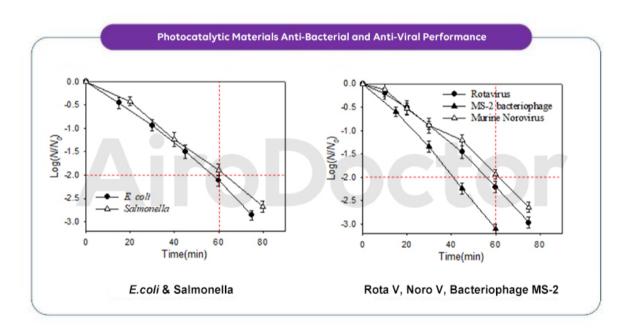


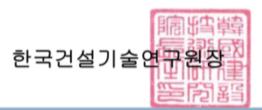
Fig. 2: Antiviral performance evaluation of photocatalytic materials using the Human Corona Virus HCoV-OC43

Test Report: Korean Institute of Civil Engineering and Building Technology (KICT)

www.kict.re.kr

99,9% Elimination of *E.coli*, Salmonella, Rota-Virus, Noro-Virus, Bacteriophage MS-2, Influenza A




Fig. 3: Antimicrobial and antiviral performance of photocatalytic material

Test Report: Korea Institute of Civil Engineering and Building Technology (KICT)

www.kict.re.kr

Consent request to use the institute name and reports of the air filter modules with antibacterial and antiviral performance for marketing purposes

Request	Response
"AiroDoctor" is an air purifier equipped with a photocatalytic air conditioning filter module with antibacterial and antiviral performance	Confirmed
The technology was developed by the government research institute KICT and integrated in the air purifier by the AiroDoctor manufacturer	Confirmed
Consent to use images, texts and contents excerpted from the photocatalytic module research reports	Confirmed
Consent to use images, texts and contents excerpted the photocatalytic module test results (including references)	Confirmed
The photocatalytic technology used in the module with antiviral and antimicrobial performance is protected by a contract between the KICT institute and the AiroDoctor manufacturer	Confirmed
Consent to use and translate the above contents	Confirmed

* Employees : Kim sung Jun Head of Research

Final decision 05/29 Gu Hyeun Bon

Co-operative

Enforce : Infrastructure Safety Research Headquarters -12265 (2020.05.29.) Received (.

Postcode : 10223 283 Goyang Dero Ilsan seo-Gu Goyang-Si Kyounggi-Di / http://www.kict.re.kr Tel : 042)610-8857 /Fax : 031)910-0121 / seongjun@kict.re.kr / Public)

Test Report: The Kitasato Institute of Medical Research

www.kitasato-u.ac.jp

The Kitasato Institute, Japan's first private medical research facility, was established in 1914. Together with the scientific discovery of life phenomena, the Institute takes as its mission the cultivation of preeminent researchers, educators, and other professionals in the Life Sciences and related fields and continues to play an active role in education, research, and medicine. Underlying all this is the indomitable spirit of the Institute's founder, Shibasaburo Kitasato, who devoted his life to preventive medicine and was a groundbreaker in the study of Life Sciences, never wavering in his efforts to apply medicine in a practical way to benefit society.

The Kitasato Institute, founded by Shibasabur Kitasato who also started the National Institute of Infectious Diseases, is a joint venture with the Institute of Research for Biologicals and operates the University School of Medicine.

99,9% Elimination of E.coli

Table 1. Bacteria elimination effectiveness of equipment for the elimination of virus/bacteria in suspension when E. coli used as indicator

Measurement	Concentration	Ultraviolet light source: OFF			Ultraviolet light source: ON			
No.	of <i>E. coli</i> injected (×10 ⁹ CFU/mI)	Concentration of <i>E. coli</i> collected upstream (×10 ⁵ CFU/ml)	Concentration of <i>E. coli</i> collected downstream (×10 ⁵ CFU/mI)	Elimination rate of <i>E. coli</i> (%)	Concentration of <i>E. coli</i> collected upstream (×10 ⁵ CFU/ml)	Concentration of <i>E. coli</i> collected downstream (×10 ⁵ CFU/ml)	Elimination rate of <i>E. coli</i> (%)	
1	1.905	110±1.6	80±0.5	27.27	115±1.5	<0.0001*	>99.999**	
2	1.905	122±2.0	72±1.0	40.98	120±2.0	<0.0001*	>99.999**	
3	1.905	126±1.5	84±1.0	33.33	126±1.4	<0.0001*	>99.999**	

*Shown below measurable limit (10 CFU/ml) because E. coli was detected.

** Calculated based on the concentration of E. coli collected downstream and measurable limit (10 CFU/mI)

THE KITASATO INSTITUTE Medical Environment Research Center

Report from: The Kitasato Institute of Medical Research

www.kitasato-u.ac.jp

99,9% Elimination of MRSA

Table 2. Bacteria elimination effectiveness of equipment for the elimination of virus/bacteria in suspension when MRSA used as indicator

Measurement	Concentration	Ultrav	violet light source: O	FF	Ultraviolet light source: ON			
No.	of MRSA injected (×10 ⁹ CFU/mI)	Concentration of MRSA collected upstream (×10 ⁵ CFU/mI)	Concentration of MRSA collected downstream (×10 ⁵ CFU/mI)	Elimination rate of MRSA (%)	Concentration of MRSA collected upstream (×10 ⁵ CFU/ml)	Concentration of MRSA collected downstream (×10 ⁵ CFU/ml)	Elimination rate of MRSA (%)	
1	1.605	120±1.5	86±0.5	27.27	115±1.5	<0.0001*	>99.999**	
2	1.605	1232±2.2	70±2.0	40.98	120±2.0	<0.0001*	>99.999**	
3	1.605	126±1.8	80±1.0	33.33	126±1.4	<0.0001*	>99.999**	

*Shown below measurable limit (10 CFU/ml) because MRSA was detected.

** Calculated based on the concentration of MRSA collected downstream and measurable limit (10 CFU/mI)

THE KITASATO INSTITUTE, Medical Environment Research Center

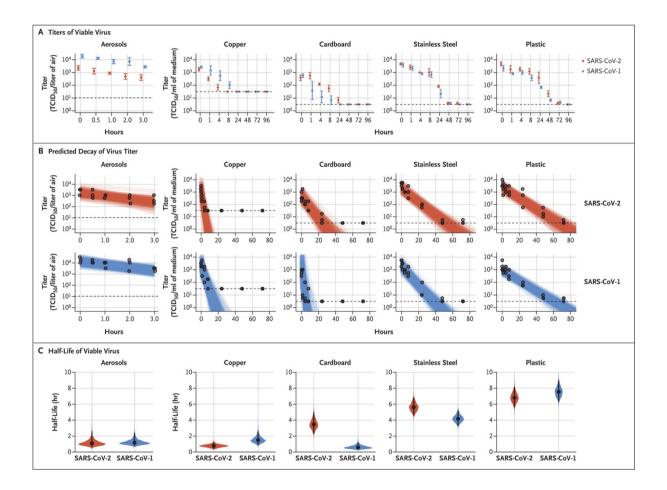
99,9% Elimination of Influenza A

Table 3. Virus elimination effectiveness of equipment for the elimination of virus/bacteria in suspension when Influenza virus A used as indicator

Measurement	Concentration	Ultrav	violet light source: O	FF	Ultra Violet light source: ON			
No.	of Influenza virus A injected (TCID ₅₀ /ml)	Concentration of Influenza virus A collected upstream	Concentration of Influenza virus A collected downstream	Elimination rate of Influenza virus A (%)	Concentration of Influenza virus A collected upstream	Concentration of Influenza virus A collected downstream	Elimination rate of Influenza virus A (%)	
		(TCID ₅₀ /ml)	(TCID ₅₀ /ml)		(TCID ₅₀ /ml)	(TCID ₅₀ /ml)		
1	1.0 ^{7.5}	10 ⁵²	10 ⁴⁸	60.19	1044	10 ^{<0.5} *	>99.987**	
2	1.0 ^{7.5}	10 ⁴⁸	10 ⁴²	74.88	10 ⁵²	10 ^{<0.5} *	>99.998**	
3	1.07.5	10 ⁴⁶	10 ⁴³	49.88	10 ⁴⁸	10 ^{<0.5} *	>99.995**	

* Shown below measurable limit (10^{<0.5} TCID₅₀/ml) because Influenza virus A was detected.

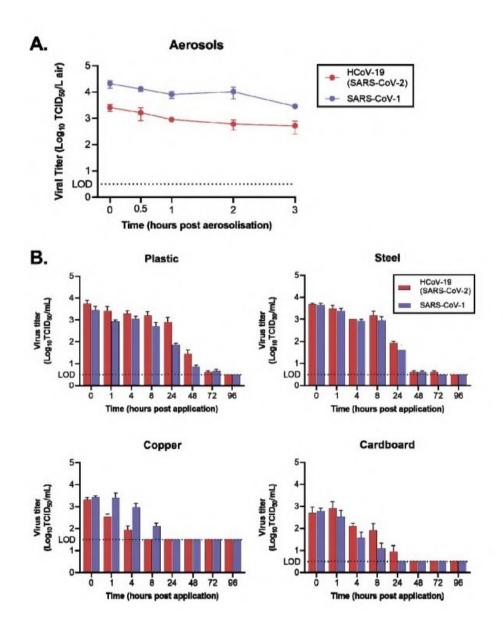
** Calculated based on the concentration of Influenza virus A collected downstream and measurable limit (10^{<0.5} TCID₅₀/ml)


THE KITASATO INSTITUTE, Medical Environment Research Center

8

Viability of SARS-CoV-1 and HCoV-19 (SARS-CoV-2) in Aerosols and on Various Surfaces

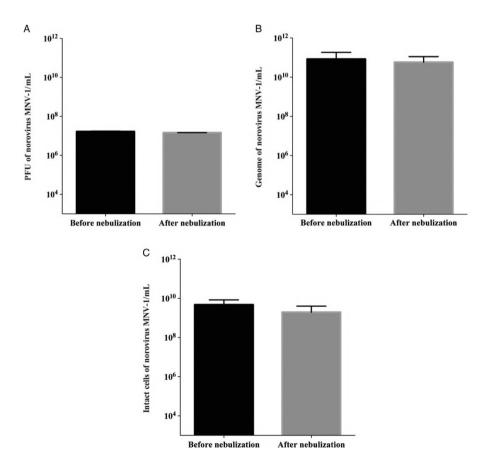
https://www.nejm.org/doi/full/10.1056/NEJMc2004973


Scientists at Princeton University, the University of California-Los Angeles and the National Institutes of Health (NIH) posted online on April 16th 2020 indicating that the COVID-19 virus could remain viable in the air up to 3 hours post aerosolization, while remaining alive on plastic and other surfaces for up to three days.

Viability of SARS-CoV-1 and HCoV-19 (SARS-CoV-2) in Aerosols and on Various Surfaces

https://www.medrxiv.org/content/10.1101/2020.03.09.20033217v1.full.pdf

"Our results indicate that aerosol and fomite transmission of HCoV-19 is plausible, as the virus can remain viable in aerosols for multiple hours and on surfaces up to days," reads the study 's abstract.


Detection and Quantification of Airborne Norovirus During Outbreaks in Healthcare Facilities

https://academic.oup.com/cid/article/61/3/299/491373

A study by the Université Laval in Québec (Clinical Infectious Diseases (2015; doi: 10.1093/cid/civ321), shows that the viruses are actually detectable in the air. The research group has examined the air at different locations in eight health care facilities during norovirus outbreaks: The samples from the patient 's room (one metre away from the patient) were 54 percent positive.

"Norovirus genomes were detected in 6 of 8 healthcare centers. The concentrations ranged from 1.35×101 to 2.35×103 genomes/m 3 in 47% of air samples. MNV-1 preserved its infectivity and integrity during in vitro aerosol studies." reads the study 's abstract.

"Norovirus genomes are frequently detected in the air of healthcare facilities during outbreaks, even out- side patients' rooms. In addition, in vitro models suggest that this virus may withstand aerosolization."

Certification: KC Electrical Certification

National Radio Research Agency

738E-D7EB-CF6E-8733

738E-D7EB-CF6E-8733							
	통신기자재등의 적합등록 필증						
Registration	of Broadcasting and Communication Equipments						
상호 또는 성명 Trade Name or Registrant							
기자재명칭(제품명칭) Equipment Name							
기본모델명 Basic Model Number	WAD-M20						
파생모델명 Series Model Number	WAD-M21, WAD-M24, WAD-M23, WAD-M22						
등록번호 Registration No.	R-R-TI7-WAD-M20						
제조자/제조(조립)국가 Manufacturer/Country of Origin	태석경공(주) / 한국						
등록연월일 Date of Registration	2020-01-29						
기타 Others							
	제58조의2 제3항에 따라 등록되었음을 증명합니다. quipment has been registered under the Clause 3, Article 58-2 of Radio 2020년(Year) 01월(Month) 29일(Day) 국립전파연구원장						
Director	General of National Radio Research Agency						
※ 적합등록 방송통	신기자재는 반드시 "적합성평가표시" 를 부착하여 유통하여야 합니다.						

위반시 파태료 처분 및 등록이 취소될 수 있습니다.

Certification: KC Safety Certification

Korea Product Safety Testing

Certification: Korea Electronics & Technology Institute

Successful filtering of Formaldehyde (HCHO), Ammonia (NH3), Ethylene oxide (C2H4O), Acetic acid (CH3COOH) and Toluene (C7H8) // Successfully tested without any detected Ozone emissions.

	ctronics Technology Institute Beginnel Branch Beport No. : 2020-01-4031 G
#226, Cheama	angeagi-ro, Buk-gu, Gwangju, Korea page (1)/(4) Technology Institut
1. Cli	-975-7015 Fax : +62-62-975-7019
	mpany : TAESEOK PRECISION & INDUSTRY CO., LTD.
	me : Seo Sang Hyun
	Idress : #172, Hvanggeum 1-ro 80beon-gill, Yangchon-eup, Gimpo-si, Gyeonggi-cb, Korea (10048)
	quest date : Jan. 30th. 2020
One	quest date - Jan. Joth. 2020
2 Pur	pose of use : Report for client
2. Fu	
3. Nam	e of specimen : Airodoctor Aircleaner (WAD-M2O)
4 Dat	e of test : Feb. 10th ~ 11th. 2020
4. Dat	e of test - Feb. loth ~ 11th. 2020
5 Tos	at environment :
	mperature : (23 ± 5) °C Humidity : (50 ± 25) % R.H.
	cation : Fixed Lab. On site(address :)
0 20	
6. Tes	t method : SPS-KACA 002-0132:2018 (Air cleaner)
7. Tes	t results : Refer to the test result
The re	sults shown in this test report refer only to the sample(s) tested unless otherwise stated.
Affirma	t Tested by Technical Manager
ion	Name: Hee-Sung Koo 7 20 Name: Choul-Jun Choi 32/11/10
This	report is for improving quality and reliability of the product.
It is i	not aloud to use other reason, such as rendering legal, accounting, and
engine	ering. KETI disclaims any responsibility or liability for the use of this
inform	ation except of original purpose.
	Apr. 24th 2020
	Korea Electronics Technology Institute
	040301303
	Gwangju Regional Branch (sign)
-	

Certification: CE - Declaration of Conformity

Europe Importer: ScreenSource GmbH

CE
EU Declaration of Conformity
This declaration of conformity is issued under the sole responsibility of the manufacturer.
We hereby declare that the object of the declaration specified below in its design, construction and in the version marketed by us is in conformity with the relevant Union harmonsation legislation:
 Restriction of Hazardous Substances Directive 2011/65/EU Low Voltage Directive 2014/35/EU Electromagnetic Compatbility (EMC) Directive 2014/30/EU Ecodesign Directive 2009/125/EC
Manufacturer:Taeseok Precision & Industry Co., Ltd. #172, Hwanggeum 1-ro 80beon- gil, Yangchon-eup, Gimpo-si, Gyeonggi-do, 10048, KOREAImporter:ScreenSource GmbH Köthener Str. 8 06779 Raguhn-Jessnitz GERMANY
Authorized person: Eddie Kim
 Description of item: Object of Declaration: Air Purifier Model Name: AiroDoctor® UV-LED Photocatalytic Air Purifier Model No: WAD-M20
Name of Signatory: Eddie Kim Date of Declaration: 01/01/2020
Title of Signatory: Managing Director Place of Declaration: Seoul, Republic of Korea
Signature: 136-81-22831 태석정공(주) 이 봉 재 경기도 김포씨 양촌읍 황금 1로 80번길 12 제 조 잠 돌, 확 귀 결

AiroDoctor